Modification of Hard-Limiting Multilayer Neural Networks for Confidence Evaluation
نویسندگان
چکیده
The central theme of this paper is to overcome the inability of feedforward neural networks with hard limiting units to provide confidence evaluation. We consider a Madaline architecture for a 2-group classification problem and concentrate on the probability density function for the neural activation of the first-layer units. As the following layers perform a Boolean table, the expectation value of the output is determined, utilizing the probability of a pattern to perform a definite binary input for the Boolean table. The Madaline architecture can be modified to the introduced X II 2 network, which evaluates the expectation value. Several assumptions on the distribution of the neural activation lead to a clear and simple architecture, which is applied to an OCR problem.
منابع مشابه
LIQUEFACTION POTENTIAL ASSESSMENT USING MULTILAYER ARTIFICIAL NEURAL NETWORK
In this study, a low-cost, rapid and qualitative evaluation procedure is presented using dynamic pattern recognition analysis to assess liquefaction potential which is useful in the planning, zoning, general hazard assessment, and delineation of areas, Dynamic pattern recognition using neural networks is generally considered to be an effective tool for assessing of hazard potential on the b...
متن کاملChecking Safety of Neural Networks with SMT Solvers: A Comparative Evaluation
In this paper we evaluate state-of-the-art SMT solvers on encodings of verification problems involving Multi-Layer Perceptrons (MLPs), a widely used type of neural network. Verification is a key technology to foster adoption of MLPs in safety-related applications, where stringent requirements about performance and robustness must be ensured and demonstrated. While safety problems for MLPs can b...
متن کاملCystoscopy Image Classication Using Deep Convolutional Neural Networks
In the past three decades, the use of smart methods in medical diagnostic systems has attractedthe attention of many researchers. However, no smart activity has been provided in the eld ofmedical image processing for diagnosis of bladder cancer through cystoscopy images despite the highprevalence in the world. In this paper, two well-known convolutional neural networks (CNNs) ...
متن کاملEntrepreneurship policy and innovative indicators of industrial companies: Evaluation by MCDM and ANN Methods
The present paper presented a methodology for prioritizing the innovative and entrepreneurial indicators using Multi Criteria Decision Making (MCDM) and Artificial Neural Networks (ANNs), taking into account three individual, organizational and cultural dimensions simultaneously in decision making procedure. This methodology has two main advantages: first, the speed of operation in the accounti...
متن کاملHourly Wind Speed Prediction using ARMA Model and Artificial Neural Networks
In this paper, a comparison study is presented on artificial intelligence and time series models in 1-hour-ahead wind speed forecasting. Three types of typical neural networks, namely adaptive linear element, multilayer perceptrons, and radial basis function, and ARMA time series model are investigated. The wind speed data used are the hourly mean wind speed data collected at Binalood site in I...
متن کامل